Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

Q is empty.


QTRS
  ↳ Overlay + Local Confluence

Q restricted rewrite system:
The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

Q is empty.

The TRS is overlay and locally confluent. By [19] we can switch to innermost.

↳ QTRS
  ↳ Overlay + Local Confluence
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))


Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
DIV(x, y, z) → INC(z)
DIV(x, y, z) → IF(lt(x, y), x, y, inc(z))
DIVISION(x, y) → DIV(x, y, 0)
INC(s(x)) → INC(x)
IF(false, x, s(y), z) → MINUS(x, s(y))
IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z)
DIV(x, y, z) → LT(x, y)

The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)
MINUS(s(x), s(y)) → MINUS(x, y)
DIV(x, y, z) → INC(z)
DIV(x, y, z) → IF(lt(x, y), x, y, inc(z))
DIVISION(x, y) → DIV(x, y, 0)
INC(s(x)) → INC(x)
IF(false, x, s(y), z) → MINUS(x, s(y))
IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z)
DIV(x, y, z) → LT(x, y)

The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 4 SCCs with 4 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INC(s(x)) → INC(x)

The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INC(s(x)) → INC(x)

R is empty.
The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

INC(s(x)) → INC(x)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

R is empty.
The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LT(s(x), s(y)) → LT(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

R is empty.
The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ QDPSizeChangeProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS(s(x), s(y)) → MINUS(x, y)

R is empty.
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
QDP
                ↳ UsableRulesProof

Q DP problem:
The TRS P consists of the following rules:

DIV(x, y, z) → IF(lt(x, y), x, y, inc(z))
IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z)

The TRS R consists of the following rules:

division(x, y) → div(x, y, 0)
div(x, y, z) → if(lt(x, y), x, y, inc(z))
if(true, x, y, z) → z
if(false, x, s(y), z) → div(minus(x, s(y)), s(y), z)
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [15] we can delete all non-usable rules [17] from R.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
QDP
                    ↳ QReductionProof

Q DP problem:
The TRS P consists of the following rules:

DIV(x, y, z) → IF(lt(x, y), x, y, inc(z))
IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z)

The TRS R consists of the following rules:

minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)
minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.

division(x0, x1)
div(x0, x1, x2)
if(true, x0, x1, x2)
if(false, x0, s(x1), x2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
QDP
                        ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

DIV(x, y, z) → IF(lt(x, y), x, y, inc(z))
IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z)

The TRS R consists of the following rules:

minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule DIV(x, y, z) → IF(lt(x, y), x, y, inc(z)) at position [0] we obtained the following new rules:

DIV(0, s(x0), y2) → IF(true, 0, s(x0), inc(y2))
DIV(s(x0), s(x1), y2) → IF(lt(x0, x1), s(x0), s(x1), inc(y2))
DIV(x0, 0, y2) → IF(false, x0, 0, inc(y2))



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
QDP
                            ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

DIV(x0, 0, y2) → IF(false, x0, 0, inc(y2))
DIV(0, s(x0), y2) → IF(true, 0, s(x0), inc(y2))
DIV(s(x0), s(x1), y2) → IF(lt(x0, x1), s(x0), s(x1), inc(y2))
IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z)

The TRS R consists of the following rules:

minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
QDP
                                ↳ Narrowing

Q DP problem:
The TRS P consists of the following rules:

DIV(s(x0), s(x1), y2) → IF(lt(x0, x1), s(x0), s(x1), inc(y2))
IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z)

The TRS R consists of the following rules:

minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
By narrowing [15] the rule IF(false, x, s(y), z) → DIV(minus(x, s(y)), s(y), z) at position [0] we obtained the following new rules:

IF(false, s(x0), s(x1), y2) → DIV(minus(x0, x1), s(x1), y2)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
QDP
                                    ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

IF(false, s(x0), s(x1), y2) → DIV(minus(x0, x1), s(x1), y2)
DIV(s(x0), s(x1), y2) → IF(lt(x0, x1), s(x0), s(x1), inc(y2))

The TRS R consists of the following rules:

minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


DIV(s(x0), s(x1), y2) → IF(lt(x0, x1), s(x0), s(x1), inc(y2))
The remaining pairs can at least be oriented weakly.

IF(false, s(x0), s(x1), y2) → DIV(minus(x0, x1), s(x1), y2)
Used ordering: Matrix interpretation [3]:
Non-tuple symbols:
M( minus(x1, x2) ) =
/0\
\0/
+
/10\
\01/
·x1+
/00\
\00/
·x2

M( true ) =
/0\
\0/

M( false ) =
/0\
\0/

M( s(x1) ) =
/1\
\1/
+
/10\
\01/
·x1

M( inc(x1) ) =
/0\
\0/
+
/00\
\00/
·x1

M( lt(x1, x2) ) =
/0\
\0/
+
/00\
\00/
·x1+
/00\
\00/
·x2

M( 0 ) =
/0\
\0/

Tuple symbols:
M( DIV(x1, ..., x3) ) = 1+
[1,0]
·x1+
[1,1]
·x2+
[0,0]
·x3

M( IF(x1, ..., x4) ) = 0+
[0,0]
·x1+
[1,0]
·x2+
[1,1]
·x3+
[0,0]
·x4


Matrix type:
We used a basic matrix type which is not further parametrizeable.


As matrix orders are CE-compatible, we used usable rules w.r.t. argument filtering in the order.
The following usable rules [17] were oriented:

minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)



↳ QTRS
  ↳ Overlay + Local Confluence
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
              ↳ QDP
              ↳ QDP
              ↳ QDP
                ↳ UsableRulesProof
                  ↳ QDP
                    ↳ QReductionProof
                      ↳ QDP
                        ↳ Narrowing
                          ↳ QDP
                            ↳ DependencyGraphProof
                              ↳ QDP
                                ↳ Narrowing
                                  ↳ QDP
                                    ↳ QDPOrderProof
QDP
                                        ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF(false, s(x0), s(x1), y2) → DIV(minus(x0, x1), s(x1), y2)

The TRS R consists of the following rules:

minus(s(x), s(y)) → minus(x, y)
minus(x, 0) → x
lt(x, 0) → false
lt(0, s(y)) → true
lt(s(x), s(y)) → lt(x, y)
inc(0) → s(0)
inc(s(x)) → s(inc(x))

The set Q consists of the following terms:

minus(x0, 0)
minus(s(x0), s(x1))
lt(x0, 0)
lt(0, s(x0))
lt(s(x0), s(x1))
inc(0)
inc(s(x0))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 1 less node.